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1 Problem #1

Consider a 2-dimensional manifold with Euclidean metric gµν .

i) How many independent components does the metric have? How many the
Christoffel symbols and how many the Riemann tensor?

ii) Show that in two dimensions the Riemann tensor has the form

Rµνab =
1

2
R(gµagνb − gµbgνa)

where R is the Ricci scalar.

iii) Argue that in 2-dimensions we can find coordinates in which the metric
locally (in an open set) takes the form

ds2 = A(r, φ)(dr2 + r2dφ2)

for some function A(r, φ).

From this point on, and to simplify the computations, assume that the func-
tion A(r, φ) only depends on r.

iv) Express the Ricci scalar of the metric in terms of A(r).

v) Consider a circle C of constant (coordinate) radius r. Argue that if we
start with a vector Xµ at one point on this cirle and we parallel transport it
around C, then when we come back to p we get a vector which has the same
magnitude as Xµ, but is rotated by an angle ψ.

vi) Parametrize the circle C by some parameter λ such that the tangent
vector has constant length along C. By evaluating the covariant derivative of
the tangent vector along C, derive a formula for the angle ψ in terms of the
Christoffel symbols.

vii) Consider the disk D which is the interior of the circle C. find the relation
between ψ and the quantity

∫

D

drdφ
√
gR

where
√
g =

√

det(gµν). Here det is the determinant of the metric,
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viii) Consider a two-dimensional sphere of radius r and a circle C correspond-
ing to the equator of the sphere. Verify that the formula you derived in vii) gives
the correct result (reminder: for a sphere of radius r we have R = 2/r2).

2 Probelm #2

Consider the Schwarzschild metric

ds2 =

(

1− 2GM

r

)

dt2 −
(

1− 2GM

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

Calculate the escape 4-velocity from this gravitational field. This means: we
shoot radially outwards a massive particle from some initial position r = r0,
with an initial 4-velocity uµ. For any given r0 we want to find the minimum
value of uµ (more precisely, the smallest value of the radial component of uµ)
so that the particle asymptotically reaches infinity with zero spatial velocity.
Notice what happens when r0 approaches the horizon.

3 Problem #3

Consider the metric

ds2 = (1− r2)dt− dr2

1− r2
− r2(dθ2 + sin2 θdφ2) (1)

which is a solution of Einstein equation with positive cosmological constant.

i) Consider a massive particle undergoing inertial motion in this metric and
derive its equations of motion.

From this point on, we will be mostly concerned with motion in the (t, r)
coordinates, so in what follows you can assume that the coordinates θ, φ always
remain fixed.

ii) Show that a particle initially placed at the origin (i.e. r|t=0 = 0) with
zero velocity (i.e. with dr

dt
|t=0 = 0) will always stay there.

iii) Show that particles away from r = 0 feel a force towards larger values of
r and will thus move towards the surface r = 1.

On the surface r = 1 the metric has a singularity. This surface is called the
de Sitter horizon

iv) Write an expression for the the proper distance from r = 0 to the de
Sitter horizon and show that it is finite.

v) Consider a light ray emitted from r = 0 towards the de Sitter horizon.
Calculate its orbit and show that in the (t, r) coordinates the light ray never
crosses the horizon.
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vi) As in the case of the Schwarzschild black hole, this is somewhat mislead-
ing. Define the analogue of Eddington Finkelstein coordinates t, r, in which the
outgoing light rays (i.e. those moving towards large values of r) move along
straight lines t − r = constant. Write the metric (1) in these new coordinates
and show that it is smooth at r = 1 and can be extended past this surface to
r > 1.

vii) Show that a freely falling massive particle will cross the de Sitter horizon
(the surface r = 1) in finite proper time, even though we found in v) that the
coordinate time t necessary for the crossing would be infinite. This situation is
very similar to the one we found in the case of the Schwarzschild black hole.

vii) Analyze the causal structure of the metric (1). This means, calculate the
form of the in- and out-going lightcones, draw a spacetime diagram in the t, r
coordinates and plot qualitatively the form of the lightcones for ingoing (moving
towards smaller r) and outgoing (moving towards larger r) lightrays.

viii) From this diagram, argue that the surface r = 1 does indeed act like a
horizon, that is, any object which starts in the region r < 1 and then crosses
the surface r = 1 towards r > 1, will never be able to come back to the region
r < 1. From the persepctive of an observer sitting at r = 0 this object is forever
lost behind the de Sitter horizon.
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